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INTRODUCTION

This is a first-year annual report on the project. The ultimate objective of this program is to
develop a predictive reaction model for soot formation in hydrocarbon flames. The specific
objectives of the proposed 3-year study are: 1) Following the successful accomplishments in
soot formation model development under the previous grant (AFOSR 88-0072), which
culminated in quantitative prediction of soot particle properties in several laminar premixed
flames, the objective now is to extend the modeling efforts to computer simulation and analysis
of more complex sooting phenomena, such as sooting limits in laminar premixed flames, soot
formation in premixed flames of aromatic fuels, and soot formation in laminar diffusion flames,
and 2) Further refinement of the underlying reaction mechanism of soot formation.

WORK PROPOSED

The specific objectives proposed are:

1. To compute several laminar premixed flames for different fuels and different stoichiometries
in an attempt to simulate the sooting limits established experimentally by Glassman and co-
workers, and having done that, to examine the factors determining the sooting limits in
premixed flames.

2. To simulate soot particle formation in laminar premixed flames of benzene. This is
important from both practical and fundamental points of view - many synthetic fuel have a
high aromatic content, and the mechanism of soot formation from aromatic fuels is
suggested to be somewhat different than from that of aliphatic hydrocarbons.

3. To initiate simulation of soot formation in laminar diffusion flame environments.

4. To undertake soot model reduction, i.e., to reduce the detailed reaction mechanism of soot
formation to a small number of equivalent equations with the objective of economic coupling
of soot formation chemistry with fluid-dynamic codes.

5. To reanalyze the PAH growth kinetics, in light of new finding that PAH condensation on
soot particle surface is a significant mass-adding process.

6. To analyze theoretically the acetylene additions to aromatic radicals, which is one of the key
reaction steps in PAH and soot particle growth. These reactions exhibit the highest
sensitivities, yet their details and parameters have not been established. Of immediate
concern is the energetics of acetylene addition to aromatic radicals and the dependence of the
reaction rate coefficient on the aromatic-radical size.

7. To continue our collaborative studies with AeroChem on the role of ions in soot formation
process.



RESULTS

During the first twelve-months period of the project, progress has been made in the
following areas: development of a new optical model, simulation of sooting limits of laminar
premixed flames; further development and testing of the detailed reaction mechanism for the
formation and growth of polycyclic aromatic hydrocarbons (PAHs); and quantum-chemical
potential energy calculations for ion-molecule reactions. The results obtained are detailed below.

New Algorithm for Powder Optical Properties

A computer algorithm was developed that calculates optical properties of an ensemble of
particles whose size distribution is given in terms of moments of the size distribution function.
This algorithm utilizes the lumping methods1 and corresponding computational codes developed
by us to model soot particle formation and growth in flames. It allows us to simulate light
absorption and scattering without assuming a functional form for the particle zize distribution,
and thus to compare directly the numerical predictions of the model to the actual measured
properties, such as intensity of scattered light determined by laser diagnostics. The new
algorithm is being implemented and tested with the lumping code for soot particle formation.

Sooting Limits

Among principal experimental data available on soot formation in hydrocarbon combustion,
critical equivalence ratios for soot appearance in laminar premixed flames, 2,3 'c, attract particular
attention. Takahashi and Glassman2 demonstrated that the values of Oc for a wide range of
fuels can be correlated by a remarkably simple relationship. It is of interest to see if this
correlation can be predicted from first principles. Here we present the initial results of such
efforts, using the recently developed reaction model for soot formation. 4

The critical equivalence ratios in laminar premixed atmospheric C2H6/0 2/N2 flames were
calculated for three maximum flame temperatures (Tmax = 1640, 1750 and 1855 K). For each
of these temperatures a series of flame calculations was performed at different equivalence
ratios. The maximum flame temperature in these calculations was kept constant by varying the
amount of N2 in the tmixture. The calculations were performed in two stages. In the first
stage, PAH formation up to coronene was simulated in a burner stabilized flame with a fixed
temperature profile. This temperature profile was obtained from the equivalent free adiabatic
flame calculated using small hydrocarbon chemistry (primarily C1 to C4 ). A description of the
flame code used to carry out these calculations is given in Ref. 5. In the second stage, the
computed profiles of H2 , H, C2H2, 02, OH, H20 and pyrene were used as input for the
simulation of soot particle nucleation and growth, accomplished with an in-house kinetic code. 4

The gas phase and surface reaction mechanisms used in both stages of the calculations were
those presented in Ref. 4.

Experimentally, 2,3 the critical equivalence ratio for the appearance of soot was determined by
observing the onset of yellow light emission in a flame. In our simulations, the critical
equivalence ratio Oc was determined from the computed luminous intensity flux emitted by the
soot particles. This luminous intensity flux, J, is given by

5
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J f A jaA dx,()0 yellow

where x is the height above the burner, A the wavelength, j the monochromatic radiant density

flux for a radiation medium of a unit volume containing n particles of size d. Based on
Kirchhoff's law, 6 we have

= , B(T ). (2)

The Planck function for an isotropic emitter, BA(T), and the absorption coefficient, a.t, in Eq.

(2) are defined as

2hc2/ (5
BA(T) - ehc/;LT - 1 (3)

and

= n 4 Qabs, (4)

respectively, where h is Planck's constant, c the speed of light. A the wavelength, k
Boltzmann's constant, T the temperature, and Qabs the absorption efficiency. The
monochromatic radiant density flux Jx for a system of particles of non-uniform particle sizes is

given by

00

JL = -XAi B;L(T)
i=1

CIO 7rd?
= BA(T) n 4 Qabs,, (5)

where the subscript i denotes a particle of size i and ni and di are the number density and the
diameter of particles of size i, respectively. The Mie absorption efficiency, Qabs,i, is calculated
from

Qabs,i = Qcxt,i - Qscai , (6)

where both the extinction efficiency, Qcxti, and the scattering efficiency, Qsca,, are expressed
as functions of particle size and wavelength using the formulas of Penndorf. 7 The complex
refractive index in our calculations was taken from Chang and Charalampopoulos. 8 The
summation in Eq. (5) was evaluated from the moments of the particle size distribution. These
moments were calculated using the method of Frenklach and Harris. 9
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Figure 1 shows the computed luminous intensity flux as a function of the equivalence ratio
at several heights above the burner for flames with maximum temperature of 1640K. The same
fluxes, but now each curve, at a given height, scaled to its maximum value, are plotted in
Fig. 2. These scaled curves were used to determine the critical equivalence ratio corresponding
to the maximum flame temperature. We assumed that the critical equivalence ratio is reached
when the luminous flux undergoes a sudden rise illustrated in Fig. 2.

0.5

---e 2 cm
-3 4 cm

0.4 -- 5 cm
-- y- 6 cm
-o 7 cm

-7cm

7TL 0.3
U, A

E
0) 0.2L /

0.1 -

0 A.Q.

0.0 diz-
1.4 1.5 1.6 1.7 1.8 1.9 2 2.1

Figure 1. Computed luminous intensity flux for the C2H6/O2/N 2 flames with Tmax 1640 K

The critical equivalence ratios determined in this manner are compared with the experimental

data of Harris et al.3 in Fig. 3. As can be seen in this figure, a reasonable agreement is
achieved. In this study, we also examined the effect of the maximum flame temperature on the

flame sooting tendency. The results for an equivalence ratio of 1.7 are shown in Fig. 4. The
bell-shaped dependence of the luminous intensity flux on temperature shown in this figure, is in

accord with that observed for the soot volume fraction in the experiments of B6hm et al.10 for
acetylene-, ethylene- and benzene-air flames.
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Figure 2. Relative luminous intensity flux for the C2H 6/0 2/N 2 flames with Tmax = 1640K.
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Figure 4. Computed luminous intensity flux as a function of maximum flame
temperature for the C2H6/O 2/N 2 flames with 0=1.7.

Neutral Reaction Mechanism

In a recent review article on chemical kinetics and combustion modeling, Miller, Kee and
Westbrook" suggested that the above cyclization reactions cannot be responsible for the
formation of the first aromatic ring because the concentrations of n-C 4 H3 and n-C 4 H5 radicals
should be low since the reactions

H + n-C4H 3  t- H + i-C 4 H3  (7)

H + n-C4H 5  ± H + i-C 4H5  (8)

deplete the concentrations of the n-isomers required for the cyclizations. Reactions (7) and (8)
were not included in our model initially, because the computational results indicated that the n-
and i-isomers are already equilibrated by several other reactions in the system. Nonetheless, to
test the Miller et aI.'s suggestion, we performed additional simulations of the three laminar
premixed flames we analyzed previously. 4 ,12 The reactions (7) and (8) were now included in
the simulations assuming rate coefficients lx1014 mol cm -3 s-! for the exothermic directions.
The results of these simulations for all the three flames tested in Refs. 12 indicated that the
inclusion of reactions (7) and (8) - even with upper-limit rate coefficient values - does not
make a difference on the computed profile of benzene.
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As an alternative, Miller et al. 11 suggested that benzene is formed by combination of
propargyl radicals producing benzene or phenyl. A similar proposal was made by Alkemade
and Homann 12 and Stein et al. 14 Figures 5 and 6 show the results of flame simulations with
reaction

C3H3 + C3H3  k I (9)

included with the rate coefficient of 5x10 12 molcm- 3 s-1 suggested by Stein et al.14 Analysis
of these results indicate that the inclusion of cyclization channel (9) does not always increase
the production rate of benzene, as clearly shown in Fig. 5 for the flame conditions of Harris
and co-workers. 15  For the conditions of the Westmoreland's flame, 16 the inclusion of
reaction (9) significantly overpredicts the amount of benzene determined experimentally (Fig. 6).
This is clearly a challenging issue, as the reaction chemistry of C3Hx species is not well
known.
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Figure 5. Benzene mole fraction: circles - experimental data, 15 solid line - computed
with the mechanism used in Refs. 4 and 12, dotted line - computed with
reaction (9) included
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Figure 6. Benzene mole fraction: circles - experimental data; 16 solid line - computed
with the mechanism used in Refs. 4 and 12; dashed and dotted lines -

computed with reaction (9) included, dotted line represents the result computed
with the mechanism tuned to fit the experimental C3H3 profile

Ionic Reaction Mechanism

To evaluate the rate coefficients for some of the key ion-molecule reactions in the AeroChem
reaction mechanism 17 suggested for the ionic pathway to soot, potential energy calculations
were performed for reaction

C8H7
+ + C2H2 ---) C1OH9

+ .

The calculations were performed on various ions using the MOPAC semi-empirical quantum
chemical program. For each proposed structure a geometry optimization was performed using
the AMI hamiltonian utilizing a BFGS update technique. A force analysis of the stable
geometries, again using MOPAC, confirmed that these were indeed local minima in the AMI
potential energy surface. The force analysis was carried out at 298 K and in the ground state
rotational level. In order to find transition states between these structures the SADDLE facility
of MOPAC was used tht interpolates between given reactant coordinates and product
coordinates. Several transition states found in this manner were confirmed to be so by a force
analysis showing one imaginary root of the force matrix. The potential energy diagram is
shown in Fig. 7. Calculations of the rate coefficients based on these data are in progress.
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FUTURE WORK

The objectives for the next year are the following:

1. To complete simulations of the sooting limits and examine the results.

2. To complete the revision and testing of the neutral reaction mechanism of PAH formation
and growth. The work is currently in progress on re-evaluation of thermodynamic and
kinetic data for key PAH species and reactions.

3. To revise the computer code for soot particle nucleation and growth. The optical model
developed, after being successfully tested, is being "inserted" into our main code.

4. To perform quantum-chemical calculations on additional ion-molecule reactions of interest to
the ionic mechanism of soot formation and preform the associated rate-coefficient
calculations.

5. To initiate a computational study of pressure effect on soot formation. This subject is of
interest due to growing concern over controlling soot emission from diesel engines.

6. To prepare manuscripts reporting the results of (1) - (4) above.
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